GP1F351T/GP1F351R Optical Mini-Jack 10, Digital Audio Equipment

Features

- 1 Electric and optical signal compatible design (Three kinds of terminals are integrated into a single unit.)
- 2 Compact design with small jack compatible mini-plug (Less than 1/2 in volume of GP1 F32T/R)
- OPIC type
 (Direct interface to microcomputer of the 1/0 signals)
 (High fidelity real sound reproduction)
- 4 High speed data transmission Signal transmission speed : MAX. 8Mbps (NRZ signal)

Applications

- 1. MD, DCC
- 2. Portable CD, DAT

(Unit: mm) **Outline** Dimensions 3 - 0.5181 2.5 **φ3.6** WUU <u>|</u> _ 8−1.0 11.0 (Ž) (3) Jack 4 Device terminal Jack terminal configuration GP1F351R GP1F351T Drive (7) Vin

(9) GND

OPIC light detector

■ Absolute Maximum Ratings

GP1 F351T/GP1 F351 R (Photoelectric conversion element)

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	-0.5 to +7.0	
(OD4 F0F4 D)	Іон	4 (source current)	mA
Output current (GP1 F351 R)	10[.	4 (sink current)	mA
Input voltage (GP1 F351T)	V_{im}	-0.5 to V _{CC} +5.0	٧
Operating temperature	Topr	-20 to +70	${\mathbb C}$
Storage temperature	T_{stg}	−30 to +80	"c
*1 Soldering temperature	T _{sol}	260	$^{\circ}$ C

GP1 F351T/GP1F351R (Jack)

Parameter	Symbol	Rating	Unit
Total power dissipation	P_{tot}	D. C.12V, 1A	_
Isolation voltage	Viso	A.C. 500Vm (For 1min.)	_
Operating temperature	Topr	– 20 to 70	$^{\circ}$ C
Storage temperature	T_{stg}	-30 to 80	'c
*l Soldering temperature	Tsol	260	$^{\circ}$ C

^{*1 5}s/time up to 2 times.

■ Recommended Operating Conditions

GP1F351T

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	4.75	5.0	5.25	V
Operating transfer rate	T	_	_	8	Mbps

GP1F351R

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	4.75	5.0	5.25	V
Operating transfer rate	T	0.1	_	8	Mbps
Receiver input optical power level	Pc	-7.4.0	_	- 14.5	dBm

■ Electro-optical Characteristics

GP1 F351T (Photoelectric conversion element)

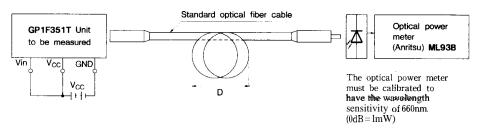
 $(Ta=25^{\circ}C)$

i i da i i (i illottociccuite c	0111011011	Cicilicite)			`	,
Parameter	Symbol	Conditions	MIN.	TYP.	MAX	Unit
Peak emission wavelength	λP		630	660	690	nm
Optical power output coupling with fiber	Pc	Refer to Fig. 1	-21	- 17	- 15	dBm
Supply current	Icc	Refer to Fig. 2		4	10	mA
High level input voltage	V_{iH}	Refer to Fig. 2	2	_	_	V
Low level input voltage	VII.	Refer to Fig. 2	_	_	0.8	V
Low→High delay time	tplH	Refer to Fig. 3			100	ns
High→ Low delay time	t _{PHI} .	Refer to Fig. 3	_	_	100	ns
Pulse width distortion	∆tw	Refer to Fig. 3	-25	_	+25	ns
Jitter	∆tj	Refer to Fig. 3	_	1	25	ns

GP1 F351 R (Photoelectric conversion element)

 $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak sensitivity wavelength	λP		_	700	_	nm
Supply current	I_{CC}	Refer to Fig. 4	_	15	40	mA
High level output voltage	V_{OH}	Refer to Fig. 5	2.7	3.5	_	V
Low level output voltage	Vol	Refer to Fig. 5	_	0.2	0.4	v
Rise time	tr	Refer to Fig. 5	_	12	30	ns
Fall time	tf	Refer to Fig. 5	_	4	30	ns
Low→High delay time	tPLH	Refer to Fig. 5	_	_	100	ns
High+ Low delay time	tPHL	Refer to Fig. 5	_	_	100	ns
Pulse width distortion	∆tw	Refer to Fig. 5	- 30	_	+30	ns
Pc=-14	Atj	Refer to Fig, 6	_	1	პċ	ns
Jitter Pc= -24dBm	Aij	Kelei to Fig, 0		1	30	ns


■ Mechanical and Electrical Characteristics GP1 F351T/GP1F351 R (Jack)

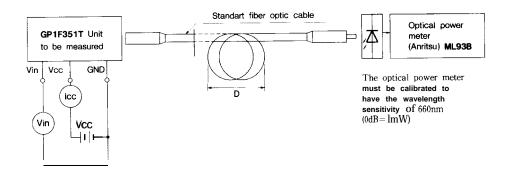
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	unit
Insertion force, withdrawal force	Fpp	*2	5	_	35	N
Contact resistance	Rcon	*3		_	30	mΩ
Isolation resistance	Riso	D.C. 500V, 1min	100	_		МΩ

Note) This jack is designed for applicable to ϕ 3.5 compact single head plug (EIAJ RC-6701A).

About movable contact terminal and make contacts, it measures at 100mA or less and 1000 H _Z at the condition of inserting EIAJ 6701A standard plug for tast.

Fig. 1 Measuring Method of Optical Output Coupling Fiber

Note) (1) V_{CC} ; 5.0 $V \pm 0.05V$ (State of operating)

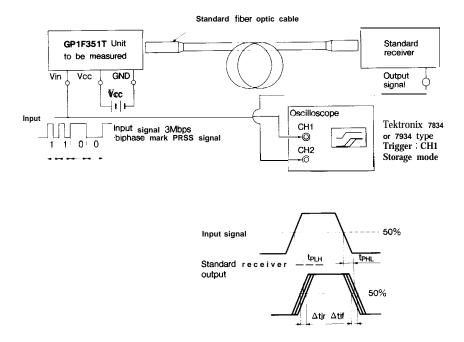

(2) To bundle up the standard fiber optic cable, make it into a loop with the diameter D= 10cm or more, (The standard fiber optic cable will be specified elsewhere.)

^{*2} Measuring method of insertion force and withdrawal force.

Insertion and withdrawal force shall be measured after inserting and withdrawing 3 times by using EIAJ RC-6701A standard plug for test.

^{*3} Measuring method of contact resistance.

Fig. 2 Measuring Method of Input Voltage and Supply Current



Input conditions and judgement method

Conditions	Judgement method
Vi. = 2.0V or more	$-21 \le P_C \le -15 \text{dBm}, I_{CC} = 10 \text{mA} \text{ or less}$
V _{in} =0.8V or less	$P_C \le -36 dBm$, Icc= 10mA or less

Note) $V_{CC} = 5.0 \pm 0.05 V$ (State of operating)

Fig. 3 Measuring Method of Pulse Response and Jitter

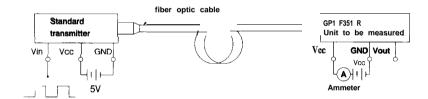
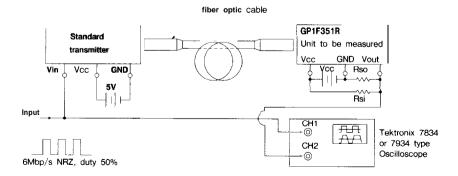
Test item

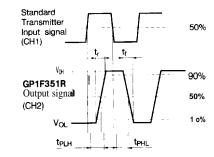
Test time	Symbol	Test condition
Low→High pulse delay time	tplh	
High→Low pulse delay time	t _{PHI} .	
Pulse width distortion	△tw	$\triangle tw = t_{PHL} - t_{PLH}$
Low→High Jitter	∆tjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High Low Jitter	∆tjf	Set the trigger on the fall of input signal to measure the jitter of the fall of output

- Note) (1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by incresing the brightness too much.
 - (2) $V_{CC} = 5.0 \pm 0.05 \text{V}$ (State of operating)
 - (3) The probe for the oscilloscope must be more than 1M Ω and less than 10pF.

Fig. 4 Supply current

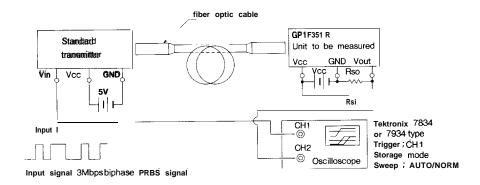
Inpu	Measuring method	
Supply voltage	$V_{CC} = 5.0 \pm 0.05 V$	Measured on an
Optical output coupling fiber	$P_C = -14.5 dBm$	ammeter (DC average
Standard transmitter input signal	6Mbps NRZ, Duty 50% or 3Mbps biphase mark PRBS signal	amperage)

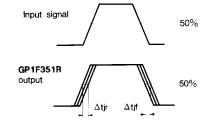




Fig. 5 Measuring Method of Output Voltage and Pulse Response

Test item

Test item	Symbol
Low→High pulse delay time	tplh
High→Low pulse delay time	tphl
Rise time	tr
Fall time	tf
Pulse width distortion $\triangle tw = t_{PHL} - t_{PLH}$	∆tw
High level output voltage	VoH
Low level output voltage	vol.

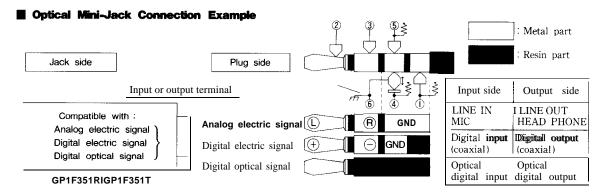



Note) (1) $V_{CC} = 5.0 \pm 0.05 V$ (State of operating) (2) The fiber coupling light output set at -14.5 dBm/-24.0 dBm.

(3) The probe for the oscilloscope must be more than 1M Ω and less than 10pF. (4) Rsi, Rso Standard load resistance (Rsi : $3.3k\,\Omega$, Rso : $2.2k\,\Omega$)

(5) The output (H/L level) of GP1F351R are not fixed constantly when it receivers the disturbing light (including DC light, no input light) less than 0.1Mbps.

Fig. 6 Measuring Method of Jitter



Test item

Test item	Symbol	Test condition
Low→High Jitter	∆tjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→ Low Jitter	∆tjf	Set the trigger on the fall of input signal to measure the jitter of the fall of output

- Note) (1) Rsi//Rso; Standard load resistance (Rsi : $3.3k\Omega$,Rso: $2.2k\Omega$)
 - (2) The fiber coupling light output set at -14.5dBm/-24.0dBm.
 - (3) The waveform write time shall be 3 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.
 - (4) $V_{CC} = 5.0 \pm 0.05 \text{V}$ (State of operating)
 - (5) The probe for the oscilloscope must be more than $1M \Omega$ and less than 10PF.

Kinds of plug	Output		
	4	(5)	1
Analog electricity	L	L	L
Digital electricity	L	L	Н
Digital optics	L	Н	Н
No plug	Н	Н	Н

• Plea* refer to the chapter "Precautions for Use" (Page 78 to 93)